LOG IN OR SIGNUP FOR DISCOUNTED PRICING ( For healthcare professionals only)



References

  1. Chen, Y., Ye, L., Guan, L., Fan, P., Liu, R., Liu, H., Chen, J., Zhu, Y., Wei, X., Liu, Y., Bai, H., Physiological electric field works via the VEGF receptor to stimulate neovessel formation of vascular endothelial cells in a 3D environment. Biol Open, 7(9), 2018.

  2. Hu, W.W., Chen, T.C., Tsao, C.W., Cheng, Y.C., The effects of substrate-mediated electrical stimulation on the promotion of osteogenic differentiation and its optimization. J Biomed Mater Res B Appl Biomater, 2018.

  3. Rouabhia, M., Park, H., Meng, S., Derbali, H., Zhang, Z. Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One. 8(8), 2013.

  4. Borgens R.B., Vanable J.W., Jaffe L.F., Bioelectricity and regeneration. I. Initiation of frog limb regeneration by minute currents. J Exp Zool. 200(3), 1977.

  5. Leppik L.P., Froemel D., Slavici A., Ovadia Z.N., Hudak L., Henrich D., Marzi I., Barker J.H., Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci Rep. 5, 2015.

  6. McCaig C.D., Rajnicek A.M., Song B., Zhao M., Controlling cell behavior electrically: current views and future potential. Physiol Rev 85(3), 2005.

  7. Latchoumane, C.V.,, Jackson, L.,, Sendi, M.S.E., Tehrani, K.F., Mortensen, L.J., Stice, S.L., Ghovanloo, M., Karumbaiah, L. Chronic Electrical Stimulation Promotes the Excitability and Plasticity of ESC-derived Neurons following Glutamate-induced Inhibition In vitro. Sci Rep, 8(1), 2018

  8. Petersen EA, Slavin KV. Peripheral nerve/field stimulation for chronic pain. Neurosurg Clin N Am. 25(4), 2014.

  9. Aplin, F.P., Singh, D., Delia Santina, C.C., Fridman, G.Y., Ionic direct current modulation for combined inhibition/excitation of the vestibular system. IEEE Trans Biomed Eng, 2018.

  10. Zehr, E.P., Collins, D.F., Chua, R., Human interlimb reflexes evoked by electrical stimulation of cutaneous nerves innervating the hand and foot. Exp Brain Res 140:495-504, 2001

  11. Clair, J.M., Anderson-Reid, J.M., Graham, C.M., Collins, D.F., Postactivation depression and recovery of reflex transmission during repetitive electrical stimulation of the human tibial nerve. J Neurophysiol 106: 184-192, 2011

  12. Clair, J.M., Okuma, Y., Misiaszek, J.E., Collins, D.F., Reflex pathways connect receptors in the human lower leg to the erector spinae muscles of the lower back. Exp Brain Res 196:217-227, 2009

  13. Kitago, T., Mazzocchio, R., Liuzzi, G., Cohen, L.G., Modulation of H-reflex excitability by tetanic stimulation. Clin Neurophysiol 115: 858-861, 2004

  14. Hamdy, S., Rothwell, J.C., Aziz, Q., Singh, K.D., Thompson, D.G., Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nature Neurosci 1: 64-68, 1998

  15. Ridding, M.C., Brouwer, B., Miles, T.S., Pitcher, J.B., Thompson, P.D., Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res 131(1): 135-43, 2000

  16. Kalisch, T., Tegenthoff, M., Dinse, H.R., Repetitive electric stimulation elicits enduring improvement of sensorimotor performance in seniors. Neural Plast 2010:690351, 2010

  17. Charlton, C.S., Ridding, M.C., Thompson, P.D., Miles, T.S., Prolonged peripheral nerve stimulation induces persistent changes in excitability of human motor cortex. J Neurol Sci 208: 79-85, 2003

  18. Collins, D.F., Burke, D., Gandevia, S.C., Sustained contractions produced by plateau-like behaviour in human motoneurones. J Physiol 538.1: 289-301, 2002

  19. Dean, J.C., Yates, L.M., Collins, D.F., Turning on the central contribution to contractions evoked by neuromuscular stimulation. J Appl Physiol 103: 170-176, 2007

  20. Stackhouse S.K., Taylor C.M., Eckenrode B.J., Stuck E., Davey H., Effects of Noxious Electrical Stimulation and Eccentric Exercise on Pain Sensitivity in Asymptomatic Individuals. PM R, 8(5), 2016.

  21. Fujii-Abe K, Umino M, Fukayama H, Kawahara H., Enhancement of Analgesic Effect by Combination of Non-Noxious Stimulation and Noxious Stimulation in Humans. Pain Pract, 16(2), 2016.

  22. Eckenrode BJ, Stackhouse SK., Improved Pressure Pain Thresholds and Function Following Noxious Electrical Stimulation on a Runner with Chronic Achilles Tendinopathy: a Case Report. Int J Sports Phys Ther, 10(3), 2015.

  23. Galloway, M.T., Lalley, A.L., Shearn, J.T., The role of mechanical loading in tendon development, maintenance, injury, and repair. J Bone Joint Surg Am, 95(17), 2013.

  24. Kaux J.F., Libertiaux V., Leprince P., Fillet M., Denoel V., Wyss C., Lecut C., Gothot A., Le Goff C., Croisier J.L., Crielaard J.M., Drion P., Eccentric Training for Tendon Healing After Acute Lesion: A Rat Model. Am J Sports Med, 45(6), 2017.

  25. Geremia, J.M., Baroni, B.M., Bobbert, M.F., Bini, R.R., Lanferdini, F.J., Vaz, M.A., Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans. Eur J Appl Physiol, 118(8), 2018.

FREE SHIPPING

Learn more about our new shipping policy

FAQ 

Our Frequently Asked Question Section

SERVICE

Learn more about our new Service Dept.

CONTACT US

We love to speak with our customers.

SIGN UP FOR NEWS and be first to hear about our specials!

Select list(s) to subscribe to


By submitting this form, you are consenting to receive marketing emails from: Remington Medical, 401 Bentley Street, Suite 9, Markham, ON, L3R 7L2, https://www.remingtonmedical.com. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact